
全球第一口钻穿白

垩纪陆相地层的科学钻 探井——"松科二井" (新华社发)

"却顾所来径,苍苍横翠微。"国家主席习近平在2019 年新年贺词中,满怀深情地回顾了全国人民一起努力拼 搏、携手奋斗的2018年。他说:"这一年,中国制造、中 国创造、中国建造共同发力,继续改变着中国的面貌。嫦 娥四号探测器成功发射, 第二艘航母出海试航, 国产大型 水陆两栖飞机水上首飞, 北斗导航向全球组网迈出坚实一 步。在此, 我要向每一位科学家、每一位工程师、每一位 '大国工匠'、每一位建设者和参与者致敬!"

"喜看稻菽千重浪,遍地英雄下夕烟。"在这春夏秋冬 又一个轮回中, 千千万万科技工作者是挥汗如雨的创新英 雄,他们在改革开放的中华沃土上辛勤耕耘,实现了一个 又一个科技突破, 书写了一个又一个创新传奇。通过他们 的努力和取得的成就,世界看到了创新中国的加速度。

本版以时间为序,总结梳理2018年中国科技创新取得 的卓越成就, 记录下创新中国奋勇前行的铿锵脚步。

首个体细胞克隆猴诞生 1.24

1月24日,中科院孙强团队在京宣布,突破了体细胞克隆猴 的世界难题,成功培育出世界首个体细胞克隆猴。这标志着中国 将率先开启以猕猴作为实验动物模型的时代。该项成果以封面文 章在线发表在生物学顶尖学术期刊《细胞》上。

自"多莉羊"体细胞克隆成功后,许多哺乳动物的体细胞克 隆也相继成功,但未能攻克人类相近的非人灵长类动物(猕猴) 的体细胞克隆难题。克隆猴有助于建立模拟人类疾病的动物模 型,将推动中国率先发展出基于非人灵长类疾病动物模型的全新 医药研发产业链,促进对阿尔茨海默病、自闭症等脑疾病的治 疗,加速针对免疫缺陷、肿瘤、代谢性疾病的新药研发进程。

中国第二艘航母首次海试

5月13日,中国第二艘航母从大连造船厂码头启航,赴相关 海域执行海上试验任务,首次接受海洋环境的真正考验,向成为 一艘真正的作战舰艇迈出关键一步。作为一种大型的水面舰艇, 航母的建造分为开工、下水、系泊试验和海上实验,以及最终交 付部队四个节点。

自2017年4月26日下水以来,第二艘航母完成了系统设备调 试、舾装施工和相关系泊试验,具备了出海试验的技术条件。专家 表示,该航母从设计到建造,全部由我国自主完成,标志着我国已经 掌握了建造中型航母以及后续更大型航母的能力。同时,国产航母 的研制也培养磨砺出一支过硬的航母人才队伍。

中继星鹊桥飞架地月间

5月21日,中国在西昌卫星发射中心用长征四号丙运载火 箭,成功将嫦娥四号任务鹊桥中继星发射升空。6月14日,鹊桥 卫星成功实施轨道捕获控制,进入环绕距月球约6.5万公里的地月 拉格朗日L2点的Halo使命轨道。

"鹊桥"是世界首颗运行于地月拉格朗日L2点的通信卫星,作 为数据中转站,它能够实时把将在月球背面着陆的嫦娥四号探测 器发出的科学数据第一时间传回地球。具体来说,"鹊桥"将在 地、月、星之间建立了3条链路——对月前向链路、对月反向链路 以及对地数传链路,实现"鹊桥"与嫦娥四号探测器的双向通信 以及与地面的双向通信。

"松科二井"人地7018米

5月26日,全球第一口钻穿白垩纪陆相地层的科学钻探井—— 松辽盆地国际大陆科学钻探工程"松科二井"在黑龙江安达市的现 场举行完井仪式。工程领导小组组长李金发在仪式上宣布,"松科 二井"钻探深度达到地下7018米,超额完成预定目标完井。

入地7018米, 意味着"松科二井"成为国际大陆科学钻探计 划实施22年以来最深钻井,是中国入地工程的一项标志性成就, 也是国际大陆科学钻探计划历程中一件大事。这将为中国地球深 部探测提供关键技术和装备,拓展松辽盆地深部页岩气、地热能 等清洁能源勘查开发的新空间,引领全球白垩纪陆相古气候研 究,显著提升我国在地质历史古气候研究领域的国际影响力,为 全世界开启"恐龙时代的旅行"。

人造单条染色体真核细胞问世 8.2

8月2日,国际顶级学术期刊《自然》同时在线发表了2篇将酵母 染色体融合的成果。其中一篇来自中国科学院覃重军研究团队及 其合作者。该项成果意味着,中国科学家在国际上首次人工创建了 单条染色体的真核细胞,创造了一种自然界中不存在的生命-"单染色体真核酵母",由此开启了合成生物学研究新时代。

酵母三分之一基因与人类同源,人造单染色体真核酵母的诞生 为研究人类染色体异常疾病提供了重要模型。下一步,科研团队计 划借助该模型,研发人类染色体缺陷或倍增等疾病的治疗方法。

散裂中子源通过验收 8.23

8月23日,国家重大科技基础设施中国散裂中子源通过国家 验收,投入正式运行,将对国内外各领域的用户开放。散裂中子 源就像"超级显微镜",是研究物质材料微观结构的理想探针,将 为诸多领域的基础研究和高新技术开发提供强有力的研究平台。

国家发展和改革委员会组织的验收委员会专家认为,中国散 裂中子源的各项指标均达到或优于批复的验收指标。装置整体设 计先进,研制设备质量精良,靶站最高中子效率和3台谱仪综合性 能达到国际先进水平。

大型水陆两栖飞机水上首飞 10.20

10月20日,中国航空工业自主研制的水陆两栖飞机鲲龙 AG600水上首飞成功。该机设计目标是达到在2米浪高的海面正常 起降,这是国内到目前为止水上飞机领域最高的抗浪能力指标, 从世界范围来讲能达到这一要求的飞机也屈指可数。

AG600与我国自主研发的大型军用运输机运-20和大型民用客 机 C919一起被称为国产大飞机"三剑客"。它的研制成功弥补了中 国水陆两用大型飞机在自主研制方面的空白。AG600设计特点是 容量大,一次可载水12吨,既可以利用适宜的水源直接从水面汲满 水后起飞,也可在基地加满水后从陆地起飞,将极大地增强我国空 中消防力量。

科技之桥港珠澳大桥开通 10.24

10月24日,集桥、岛、隧道于一体的港珠澳大桥正式通车。 该桥全长55公里,创世界跨海大桥长度之最。港珠澳大桥集现代 工程科技之大成,在设计、建设中克服了诸多世界级难题,创造 了世界工程科技的奇迹:设计了东西两个人工岛,用长达6.7公里 的海底沉管隧道连接,实现了沉管在海平面以下13米至48米无人 精准对接;以使用60座埃菲尔铁塔的钢材量,建设了15公里的全 钢结构钢箱梁,创世界钢铁大桥长度纪录;

值得一提的是,大桥设计寿命长达120年,不仅可以长期经受 海底恶劣环境的侵蚀考验,而且可以抗击8级强震,抵御超强台 风。9月中旬,被称为本世纪迄今最强的超级台风"山竹"横扫广 东,港珠澳大桥经受住了考验,安然无恙。

"中国诺奖"花落水稻分子育种

11月18日,被称为"中国诺奖"的未来科学大奖揭晓。李家洋、 袁隆平、张启发3位水稻育种专家摘得其中的"生命科学奖"。

颁奖词指出,3位科学家"系统性地研究水稻特定性状的分子 机制和采用新技术选育高产优质水稻新品种中的开创性贡献""在 推动水稻产量可持续增长的'命题'下相得益彰,获得了重大成 就"。评委盛赞:"他们的原创性工作对中国在基础科学领域以及 国计民生的巨大影响博得国际科学界的公认。"

值得注意的是,张启发和李家洋继袁隆平在杂交水稻领域的 突破性工作后, 开拓性地将现代分子遗传学和基因组学技术应用 于水稻育种,显著地降低了杂交育种的随机性,极大地拓展了杂 种优势在水稻育种中的应用。

嫦娥四号向月球背面出发 12.8

12月8日2时24分,中国长征三号乙运载火箭在西昌卫星发射 中心起飞, 把嫦娥四号探测器送入地月转移轨道, 踏上了奔赴月 球背面的征程,经过27天飞行之后,预计2019年年初着陆。

嫦娥四号将首次实现人类探测器在月球背面软着陆和巡视勘 察,首次实现月球背面与地面站通过中继卫星通信。

软着陆后,嫦娥四号将对月球背面的环境进行研究,对月球 背面的表面、浅深层、深层进行研究,在月球背面进行低频射电 天文观测。

嫦娥四号还将开展超地月距离的反射式激光测距试验,开展 月球背面中子及辐射剂量、中性原子分布和地月L2点低频射电天 文观测研究等,这些都是人类科技史上的"第一次"。

科技工作者获评"改革先锋"

12月18日,庆祝改革开放40周年大会举行,100名"改革先 锋"称号获得者受到表彰。其中有一批科技工作者,包括氢弹之 父于敏、"863" 计划倡导者王大珩、王码汉字键盘输入发明者王 永民、"蛟龙号"载人潜水器潜航员叶聪、航天科技事业的推动者 孙家栋、人居环境科学的创建者吴良镛、著名数学家陈景润、"天 眼"射电望远镜的奠基者南仁东、杂交水稻之父袁隆平、现代出 版印刷系统的探索者王选。

"改革先锋"称号既是对获奖者个人科技突出成就的褒奖,也 是对科技工作者群体在改革开放伟大进程中卓越贡献的肯定,激 励他们在新时代里继续为实现"两个一百年"奋斗目标,实现中 华民族伟大复兴的中国梦而努力拼搏。

11.29

"超分辨光刻装备研制"通过验收

11月29日,国家重大科研装备研制项目"超分辨光刻装备研 制"通过验收。该光刻机由中国科学院光电技术研究所研制,光 刻分辨力达到22纳米。验收组专家一致表示,该光刻机在365纳 米光源波长下,单次曝光最高线宽分辨力达到22纳米。项目在原 理上突破分辨力衍射极限,建立了一条高分辨、大面积的纳米光 刻装备研发新路线,绕过国外相关知识产权壁垒。

中科院光电所此次通过验收的表面等离子体超分辨光刻装 备,打破了传统路线格局,形成一条全新的纳米光学光刻技术路 线, 具有完全自主知识产权, 为第三代光学器件、广义芯片等变 革性领域的跨越式发展奠定了更好基础。

12.27

中国北斗初具全球范儿

12月27日,在国务院新闻办发布会上,北斗卫星导航系统新 闻发言人冉承其宣布, 北斗三号基本系统完成建设, 并于当日开 始提供全球服务。这标志着北斗系统正式迈入全球时代。

北斗系统是中国自主建设、独立运行,与世界其他卫星导航 系统兼容共用的全球卫星导航系统,可在全球范围,全天候、全 天时,为各类用户提供高精度、高可靠的定位、导航、授时服务。

自上世纪90年代开始,北斗系统启动研制,按"三步走"发 展战略, 先有源后无源, 先区域后全球, 先后建成北斗一号、北 斗二号、北斗三号系统,走出了一条中国特色的卫星导航系统建 设道路 (本报记者 张保淑整理)

